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Semantic segmentation of point cloud usually relies on dense annotation that is exhausting and costly,
so it attracts wide attention to investigate solutions for the weakly supervised scheme with only
sparse points annotated. Existing works start from the given labels and propagate them to highly-
related but unlabeled points, with the guidance of data, e.g. intra-point relation. However, it suffers
from (i) the inefficient exploitation of data information, and (ii) the strong reliance on labels thus
is easily suppressed when given much fewer annotations. Therefore, we propose a novel framework,
PointMatch, that stands on both data and label, by applying consistency regularization to sufficiently
probe information from data itself and leveraging weak labels as assistance at the same time. By
doing so, meaningful information can be learned from both data and label for better representation
learning, which also enables the model more robust to the extent of label sparsity. Simple yet
effective, the proposed PointMatch achieves the state-of-the-art performance under various weakly-
supervised schemes on both ScanNet-v2 and S3DIS datasets, especially on the settings with extremely
sparse labels, e.g. surpassing SQN by 21.2% and 17.2% on the 0.01% and 0.1% setting of ScanNet-v2,
respectively.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Semantic segmentation of 3D point clouds is crucial for the
pplication of intelligent robots’ understanding scenes in the real
orld. Great efforts have been contributed to the fully super-
ised scheme, while it requires exhausting and costly per-point
nnotations (e.g around 22.3 min to annotate an indoor scene on
verage [1]). Thus, weakly supervised 3D semantic segmentation
ow receives increasing attention, where only limited point-level
nnotations are provided in each point cloud.
Recently, several approaches are proposed for weakly super-

ised point cloud semantic segmentation with different kinds of
eak labels, including projected 2D image [5], subcloud-level [6],
egment-level [7], and point-level [2–4,8] supervision. In this
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paper, we focus on addressing the setting of sparse point-level
labels, which is one of the most convenient annotation schemes
in the application. The key challenge of this task is the difficulty of
learning a robust model given very sparse supervision in the point
cloud (e.g 0.1%, 0.01% of points annotated in [2] and around 0.02%
in [4]). Existing solutions are mainly committed to alleviating
the label sparsity by reusing limited supervision, i.e, first probing
the highly-related points [2] or super-voxels [4] and allowing
them to share the same training labels. However, this line of
works is explicitly constructed on label propagation and employs
point cloud data as the propagation guidance, which suffers from
(i) the insufficient exploitation of data information limits the
learning efficiency, and (ii) the propagated labels strongly rely
on the original annotation scale thus the performance is easily
suppressed when given much fewer labels. Therefore, we propose
to probe information from both label and data itself for more
efficient and robust representation learning.

Recently, consistency training is acknowledged as a power-
ful algorithmic paradigm for robust learning from label-scarce
data, e.g in unsupervised/semi-supervised learning [9–12] and
unsupervised/semi-supervised domain adaptation [13–15]. It work
s

https://doi.org/10.1016/j.cag.2023.09.006
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2023.09.006&domain=pdf
mailto:yushuangwu@link.cuhk.edu.cn
mailto:zizhengyan@link.cuhk.edu.cn
mailto:shengcaicai@link.cuhk.edu.cn
mailto:liguanbin@mail.sysu.edu.cn
mailto:hanxiaoguang@cuhk.edu.cn
mailto:shuguangcui@cuhk.edu.cn
https://doi.org/10.1016/j.cag.2023.09.006


Y. Wu, Z. Yan, S. Cai et al. Computers & Graphics 116 (2023) 427–436

p
a
t
i
l
t
p
t
t
‘
s
t
t
l
t
g
i
S
o
P
o
r

Fig. 1. (a), (b) the performance of PointMatch on the ScanNet-v2 and S3DIS datasets over various weakly supervised semantic segmentation settings: annotating
0.01%, 0.1% of points [2], 20 points per-scene [3], and ‘‘1thing1click’’ [4]. (c), (d) a comparison between previous works and the proposed approach.
-

by forcing the model to make consistent prediction under differ-
ent perturbations/augmentations to the input sample (named as
different views) and the prediction in one view usually serve as
the pseudo-label of the other view. Inspired by this, we propose a
novel consistency training framework, PointMatch, for the weakly
supervised 3D semantic segmentation. Given a whole scene of
point cloud with sparse labels, PointMatch employs the per-point
prediction in one view as the other’s pseudo-label to encour-
age the predictive consistency between two views of a scene.
Such consistency facilitates (i) robustness to easily-perturbed
low-level input features and (ii) stronger capability in learning
useful high-level representations to keep predictive consistency.
Besides, the provided labels act as extra supervision to assist
high-level semantic feature discrimination, which also benefits
the representation learning from data. By doing so, the reliance on
the given label is relieved and more information is probed from
the point cloud data itself.

Originating from the per-point prediction in one view, the
seudo-label should be of high quality to provide positive guid-
nce for the other. Whereas there exist considerable mispredic-
ions especially at the early learning stage. Thus, we exploit the
nherent structure of the point cloud to improve the pseudo-
abel quality, via integrating the super-point grouping informa-
ion where similar points are clustered by low-level features (e.g
osition and color) into the same group and are assumed to have
he same semantic meaning. Specifically, the grouping informa-
ion is used to correct the minor predictions that diverge from the
‘mainstream’’ in the super-point. Despite its good property, the
uper-point-aware pseudo-label actually introduces noise from
he pretext super-point generation. Therefore, to fully utilize
hese two types of pseudo-labels, we design an adaptive pseudo-
abeling mechanism, where the model is encouraged to believe
he super-point-aware pseudo-label more at the beginning, and
radually resorts to its raw prediction when the model itself
s reliable enough. Extensive experiments and analysis on the
canNet-v2 [1] and S3DIS [16] dataset validate the effectiveness
f the proposed approach. As shown in Fig. 1, the proposed
ointMatch significantly surpasses the state of the art on vari-
us weakly supervised schemes and impressively, shows great
obustness given extremely sparse labels.
428
The contributions of this paper are listed as follows:

• We propose a novel consistency training framework, Point-
Match, for the weakly supervised 3D semantic segmen-
tation, which can facilitate the network to learn robust
representation from sparse labels and point cloud data.
• We introduce super-point information to promote the pseudo

label quality in our framework, and it is employed in an
adaptive manner to well utilize the advantages of both two
types of pseudo-label.
• Extensive experiments validate the effectiveness and supe-

riority of PointMatch, and the proposed approach achieves
significant improvements beyond the state of the art over
various weakly-supervised settings.

2. Related work

Fully supervised 3D semantic segmentation. Semantic segmenta-
tion approaches for 3D point cloud can be mainly classified into
two groups: point-based and voxel-based methods. Point-based
Methods [17–23] apply convolutional kernels to a local region
of points for feature extraction and the neighbors of a point are
computed from k-NN or spherical search. In the case of voxel-
based methods [24–27], the points in the 3D space are first
transformed into voxel representations so that standard CNN can
be adapted to process the structured voxels. In either point-based
or voxel-based methods, feature aggregation is performed in the
Euclidean space, while there are some recent works [28–31] that
consider geodesic information for better feature representation.
More recently, the Transformer structure [32,33] is also proposed
for point clouds, as an alternative to the classic convolutional
structure. However, most of the above methods are designed
for the fully-supervised scheme [34–36], while annotation on
point clouds is exhausting and costly, especially in the application
of semantic segmentation, where the scene (indoor or outdoor)
point cloud is usually of a large scale. In this work, we focus
on weakly-supervised point cloud segmentation, where only very
sparse points are annotated in each scene.
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Fig. 2. The overview of PointMatch. (a) the input point cloud; (b) the view A augmented from the input point cloud; (c) view B generated via another augmentation;
d) the point-wise pseudo-label; (e) the super-point-wise pseudo-label; (f) the weak supervision (‘‘1thing1click’’ setting), points in gray are unlabeled ones and other
olors indicate different semantic meanings.
t

t

eakly supervised 3D semantic segmentation. Existing works ex-
lore the 3D semantic segmentation with various types of weak
upervision, including 2D image [5], subcloud-level [6], segment-
evel [7], and point-level supervision [2,4,8,37]. The first three
ypes can be grouped into indirect annotations [2]. The work
f [5] utilizes the annotations on the projected 2D image of
point cloud, with only a single view per sample. In [6], a

lassifier is trained first with sub-cloud labels, from which point-
evel pseudo labels can be generated via class activation mapping
echniques [38]. In another way, the work of [7] pre-generates
egments/super-points to extend sparse click annotation into
egment-level supervision, and groups unlabeled segments into
he relevant nearby labeled ones for label sharing. For point-level
eak supervision, the work of [2] proposes to use only 10% of

abels by learning gradient approximation and utilizing low-level
moothness constraints. A harder setting with a much lower label
atio, 1‰, is further investigated in [2], where a Semantic Query
etwork (SQN) is proposed based on leveraging the semantic
imilarity between neighboring points. Another work OTOC [4]
roposes a novel weakly supervised setting, One Thing One Click
‘‘1thing1click’’), i.e, with only one point annotated for each
nstance in the scene. They employ an extra branch of network
o probe the relation between super-points and propagate labels
mong highly-related ones. Besides, authors of [37] propose an
ctive learning approach for annotating selected super-point with
limited budget to maximize model performance. Another line
f work is contributed to self-supervised pre-training of 3D point
louds [3,39–42]. The pre-training usually needs weak or even no
abels and provides a better network initialization for the down-
tream tasks. Besides, two related works are [43,44] which adopts
onsistency learning and super-point guidance, respectively.
Existing point-level weakly supervised 3D semantic segmenta-

ion methods act on label propagation by leveraging the relation
etween points/super-points. However, the proposed PointMatch
akes a novel way based on consistency regularization to better
robe information in the point cloud data itself and alleviates the
eliance on the given labels.

onsistency training. Consistency training is a powerful algorith-
ic paradigm proposed for robust learning from label-scarce
ata. It is constructed on enforcing the prediction stability un-
er different input transformations [45], e.g adversarial pertur-
ations [46] or data augmentations [11,12], in the manner of
seudo-labeling, i.e, using the prediction of one transformation
s the fitting target of the other. Thus it combines the advantages
f both consistency regularization and pseudo-labeling (or self-
raining). This approach has been applied in many domains, such
 r
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as semi-supervised learning (SSL) [11,12,47,48], unsupervised
learning (USL) [9,10], unsupervised domain adaptation (UDA)
[13,14], and semi-supervised domain adaptation (SSDA) [15,49],
all of which prove the effectiveness of consistency training in
learning high-quality representations from label-scarce data. More
recently, there are some works extending consistency training
into other tasks, such as unsupervised domain adaptation for
image segmentation [50] and semi-supervised 3D object detec-
tion [51].

To our knowledge, it is the first time that consistency training
is applied in the weakly supervised semantic segmentation of
3D point clouds. Different from the previous works, consistency
training is novelly used in a weakly-supervised scenario where
limited point-wise supervision is provided in each training sam-
ple. In addition, our work properly leverages the super-point
grouping information in point clouds to further improve the
whole framework.

3. Methodology

3.1. Problem definition

We first formulate the weakly supervised 3D semantic seg-
mentation problem, taking the indoor scene scenario as an exam-
ple. Given the point cloud P ∈ RN×D of a scene of N points with
D-dimension features, there are only partial points annotated for
training. The points with labels are denoted as {(xli, yi), i ∈ L}, and
other unlabeled points are denoted as {xui , i ∈ U}, where L and U
are two sets, satisfying L∩U = ∅ and L∪U = ⟨N⟩ (⟨N⟩ is a short
form of {1, 2, . . . ,N}, the same hereinafter). The target of f is to
predict the semantic category yi ∈ ⟨C⟩ of each point xi, where
C is the number of possible categories. Taking the point cloud P
as input, f outputs the prediction probability Q ∈ [0, 1]N×C over
all C classes, for all N points of P. Note that the summation of
values in each row of Q is equal to 1. Denote the weak semantic
label of the whole scene as y ∈ ⟨C⟩N and its one-hot extension as
Y ∈ {0, 1}N×C . To optimize f , a straightforward way is to compute
the cross-entropy loss Lce between Q and Y, formulated as:

Lce =
1
|L|

∑
i∈L

cross-entropy(Qi, Yi), (1)

where |L| represents the set size of L and the subscript i indicates
he row index, so Qi and Yi are two C-class distributions corre-
sponding to the ith point. At the inference stage, the semantic
segmentation result of a scene can be generated from f ’s predic-
ion, by simply choosing the class with the highest score in each
ow of Q.
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To probe more information the limited labels and point cloud
ata itself, we design a novel framework, PointMatch, with the
ipeline illustrated in Fig. 2. It conducts a consistency training
ramework designed for weakly labeled point clouds, and an
daptive pseudo-labeling mechanism by incorporating the super-
oint information, described in the following Section 3.2 and
ection 3.3, respectively.

.2. Consistency training

The proposed consistency training framework focuses on bet-
er exploitation of data itself, by encouraging the model’s point-
ise predictive consistency between two views of an input scene,
y employing the prediction in one view as the pseudo-label
f the other. Such a consistency training approach has three
dvantages: (i) various augmentations enable the network robust
o different kinds of perturbation on low-level input features;
ii) the consistency target facilitates the model’s ability in extract-
ng high-level semantic features from the point cloud data itself;
iii) the self-training process implicitly propagates sparse training
ignals to unlabeled points and provide dense pseudo-labels,
hich increases the learning stability.
Formally, given a point cloud P ∈ RN×D, our PointMatch

pplies two different groups of data augmentations to create
ts two views PA

∈ RN×D and PB
∈ RN×D, respectively. To

void breaking the local structure of the point cloud too much,
e perform scene-level augmentations like offsetting, scaling,
otation, flipping, jittering, etc. The obtained two views PA and
B are then fed into the 3D U-Net fθ for point-wise semantic
rediction, where θ is the network parameters. The network fθ
utputs the per-point probability distribution of PA, denoted as
A
∈ [0, 1]N×C , and similarly, QB

∈ [0, 1]N×C can be generated
rom PB, formulated as:
A
= fθ (PA),

QB
= fθ (PB).

(2)

n the next step, we generate the pseudo-label of QB from QA

o create the self-consistency loop. Specifically, the most-likely
redictive category of each point (as well as its confidence score)
s chosen to form the pseudo-label, i.e, the indices of the highest
alue in each row of QA. However, QA is usually noisy and even
ontains many uncertain predictions, so a direct use may provide
egative guidance to QB and harm the whole learning scheme.
ence, we conduct a filtering operation to improve the pseudo-
abel quality, by ignoring those predictions with confidence lower
han a threshold τ . Denote the filtering mask as m ∈ [0, 1]N ,
hich is generated as follows:

i =

{
1, max(QA

i ) ≥ τ ,

0, otherwise, ∀i ∈ ⟨N⟩, (3)

here i is the row index of QA and τ is set as 0.95 in our imple-
entation. Given m and the one-hot extension of QB’s pseudo-

abel, represented as ŶB
∈ {0, 1}N×C , the pseudo-labeling of QB

an be conducted via a cross-entropy loss:

pl =
1
N

∑
i∈⟨N⟩

mi · cross-entropy(QB
i , ŶB

i ). (4)

Until this point, we are working on probing information only
from point cloud data itself for better data exploitation. Then
the weak labels are integrated to provide discriminative semantic
information, by using Y as the supervision of QA via computing
a cross-entropy loss as in Eq. (1). The parameters θ can then
be optimized by minimizing the objective loss function Ltotal as
follows:

minLtotal = minLce + λLpl, (5)

θ θ

c
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Algorithm 1: PointMatch in a PyTorch-like style.

# N, C: scalar, the number of points and classes
# f: 3D U-Net, input N x 6, output N x C
# x: tensor, the input point cloud, N x 6
# y: tensor, the one-hot weak label, N x C
# mask: the mask for weak label, N x 1
# groups: list, each element is a list of point indices

belong to one super-point
# T_pt, T_sp: threshold 0.95, scalar
# w: the balance weight with an inverse decay

def augment(x):
x_view1 = augment1(x)
x_view2 = augment2(x)
# x_view1, x_view2: N x 6
return x_view1, x_view2

def correct(x_logit1, groups):
ps_label_sp = torch.zeros(x_logit1.shape)
for gp in group:

ps_label_sp[gp] = x_logit1[gp].mean(dim=0)
ps_label_sp = torch.softmax(ps_label_sp, dim=-1)
# ps_label_sp: N x C
return ps_label_sp

def CE(x, y, mask):
loss = F.cross_entropy(x, y)
loss = (loss * mask).mean()
return loss

for x in dataset:
# generate two views of the input point cloud
x_view1, x_view2 = augment(x)

# compute the prediction logits in two views
x_logit1 = f(x_view1)
x_logit2 = f(x_view2)

# get point-wise pseudo-label: ps_label_pt
scores = torch.softmax(x_logit1.detach(), dim=-1)
max_probs, ps_label_pt = torch.max(scores, dim=-1)
mask_pt = max_probs.ge(T_pt)

# get super-point-wise pseudo-label: ps_label_sp
scores = correct(x_logit1, groups)
max_probs, ps_label_sp = torch.max(scores, dim=-1)
mask_pt = max_probs.ge(T_sp)

# compute loss
L_ce = CE(x_logit1, y, mask)
L_pt = CE(x_logit2, ps_label_pt, mask_pt)
L_sp = CE(x_logit2, ps_label_sp, mask_sp)
L_tot = L_ce + (1-w) * L_pt + w * L_sp
L_tot.backward()

where λ is a scalar weight for balancing the two loss functions.
s the learning process goes, the model exploits the knowledge
earned from the limited annotations to train itself via forcing the
redictive consistency, and meanwhile, implicitly propagates the
parse training signals to the whole scene via pseudo-labeling.

.3. Adaptive pseudo-labeling

Although the framework above facilitates the model’s robust
earning subtly, we observe that there are still considerable mis-
redictions in the obtained pseudo-labels, especially at the early
earning stage. One reason is that the previous training scheme is
ainly constructed on the predictive consistency between each
air of single points, and the inter-point relation information is
earned insufficiently. Therefore, we further exploit the super-
oint prior to introduce local structure information of point
louds for generating pseudo-labels of higher quality.
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The super-points of a scene can be generated via an unsuper-
ised low-level clustering by the position and color information
f each point. We refer to [52] for the manner of super-point
eneration, and it is recommended for more details. Formally,
iven a point cloud P ∈ RN×D, we obtain a set of super-points
S(i)}, i ∈ ⟨M⟩, where M is the number of super-point and each
(i)
∈ RS(i)×D includes S(i) D-dimension points. Each point in P

elongs to one super-point only, so S(i) ∩ S(j) = ∅,∀i ̸= j and
he summation of all S(i) is equal to N . The obtained super-point
nformation is then used to improve the quality of point-wise
seudo-label ŶB. Given point-wise predictions in each super-point
roup, a voting operation is carried out to get a ‘‘mainstream’’
ategory. The elected category is then propagated to all points
n this group to obtain a super-point-wise pseudo-label ŶB

sp. An
llustrative example of ŶB and ŶB

sp is shown in Fig. 2(d) and (e),
espectively. It can be observed that ŶB

sp tends to have higher
urity. Similar to Section 3.2, we preserve confident predictions
o form high-quality super-point-wise pseudo-labels. Specifically,
iven QB, the average probability distribution in each super-point
s computed first, of which the category with the highest score is
elected and propagated in the whole super-point. Then the fil-
ering mask msp is generated by checking whether the confidence
f each point is beyond a pre-defined threshold τ sp, similar to the
omputation in Eq. (3).
Although the voting operation enables ŶB

sp more stable and
ccurate, it suffers from the inherent noise arising from the super-
oint generation process. Thus, the point-wise pseudo-labels may
ave higher accuracy when the model is strong enough. Accord-
ngly, we further design an adaptive combination mechanism to
xploit the advantages of both. At the early stage, the learning of
θ relies on ŶB

sp via a cross-entropy loss Lsp
pl :

sp
pl =

1
N

∑
i∈⟨N⟩

msp
i · cross-entropy(Q

B
i , ŶB

spi). (6)

As the learning goes, an adaptive weight w is adopted to gradually
incorporate Lpl (Eq. (4)) and abandon Lsp

pl :

L′pl = w · Lsp
pl + (1− w) · Lpl, (7)

where w is a scalar in the range of [0, 1] and drops from 1 to 0
gradually with an inverse decay. Formally, the adaptive weight w
at the kth training epoch can be computed as:

w = α · k−1, k ∈ N, (8)

where α > 0 indicates the decay ratio. In this way, at the late
stage of training, fθ can be completely supervised by the point-
wise pseudo-label, so that the model can keep from the noise in
super-point grouping. The new pseudo-labeling loss L′pl is used to
substitute the original Lpl in Eq. (5) for the final loss function.

4. Experiments

4.1. Experiment setup

Datasets and metric. We choose two popular point cloud datasets
for the evaluation of our method, ScanNet-v2 [1] and S3DIS [16].
The ScanNet-v2 dataset [1] contains the 3D scans of 1613 in-
door scenes of 20 semantic categories (1201 for training, 312
for validation, and 100 for online testing). The whole dataset
includes around 243 million points in total. The S3DIS dataset [16]
contains 271 room point clouds with 13 categories, scanned from
6 areas. Following the official train/validation split, Area 1,2,3,4,6
are used for training and Area 5 is used for evaluation. Besides,
the S3DIS dataset has 273 million points, i.e, around 1 million
oints per scene on average, which is denser than scenes in the
canNet dataset. Considering there are much more points in a
431
Table 1
MIoU (%) on the ScanNet-v2 dataset (online test set). * means
the performance of our baseline on the fully-supervised setting.
The underline indicates the previous SOTA performance on each
setting. The supervision types ‘‘subcloud’’ and ‘‘segment’’ mean
using subcloud-level and segment-level annotation, respectively.
‘‘20 points’’ and ‘‘1thing1click’’ mean annotating 20 points per
scene and annotating one point in each instance, respectively.
Method Supervision MIoU

[18] PointNet++ 100% 33.9
[53] SPLATNet 100% 39.3
[54] TangentConv 100% 43.8
[19] PointCNN 100% 45.8
[23] FPConv 100% 63.9
[20] PointConv 100% 66.6
[22] KPConv 100% 68.4
[25] MinkowskiNet 100% 73.6
[31] VMNet 100% 74.6
[55] Occuseg 100% 76.4
[56] Mix3D 100% 78.1

[24] SparseConv 100% 72.5*

[6] MPRM subcloud 41.1
[7] SegGroup segment 61.1
[2] SQN 0.01% 35.9
[2] SQN 0.1% 51.6
[4] OTOC 20 points 59.4
[4] OTOC 1thing1click 69.1

PointMatch 0.01% 57.1
PointMatch 0.1% 68.8
PointMatch 20 points 62.4
PointMatch 1thing1click 69.5

Table 2
MIoU (%) on the ScanNet-v2 dataset validation set. * means the
performance of our baseline on the fully-supervised setting. Note
that SQN [2] reports only its performance of 0.1% label setting on
the ScanNet-v2 validation set.
Method Supervision MIoU

[24] SparseConv 100% 72.2*
[2] SQN 0.1% 53.5
[4] OTOC 20 points 61.4
[4] OTOC 1thing1click 70.5

PointMatch 0.01% 58.7
PointMatch 0.1% 69.3
PointMatch 20 points 64.8
PointMatch 1thing1click 70.7

scene of the S3DIS dataset [16], we randomly sample 800k points
for those too-large scenes, while this number is 250k for the
ScanNet-v2 dataset [1]. The evaluation metric for 3D semantic
segmentation we use is intersection-over-union, and we report
the mean result (MIoU) over all categories for comparison with
other methods.

Augmentations. We use two different groups of augmentations
to create two views for each point cloud. The first group of aug-
mentations includes random flipping and rotation, and the second
group includes augmentations with slightly higher complexity,
such as position jittering, affine transformation, and color jitter-
ing. The scale for jittering and affine transformation are 0.1 and
0.5, respectively. The color jittering may transform the original
RGB values out of the standard range [0, 255], so we employ a
clipping operation to restrict the jittered colors.

Implementation details. We adopt SparseConv [24] as the 3D U-
Net backbone in PointMatch, which is also used in OTOC [4] and
has a same-level performance compared with the backbone used
in [57]. The output dimension of the SparseConv is set to 32,
which is the same as in [4]. Following [4,57], we randomly sam-
ple 250k points for too-large scenes in the ScanNet-v2 dataset.
Hyper-parameters in our experiment τ , τ sp, ϵ, λ, and α are set to
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Table 3
IoU(%) on the ScanNet-v2 online test set over 20 categories. ‘‘Super.’’ means the supervision type.
Method Super. MIoU bath. bed book. cab. chair count. curt. desk door floor other. pic. refrig. show. sink sofa table toil. wall wind.

[18] PointNet++ 100% 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
[19] PointCNN 100% 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5
[20] PointConv 100% 55.6 63.6 64.0 57.4 47.2 73.9 43.0 43.3 41.8 44.5 94.4 37.2 18.5 46.4 57.5 54.0 63.9 50.5 82.7 76.2 51.5
[22] KPConv 100% 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
[24] SparseConv 100% 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4 95.5 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
[25] Mink.Net 100% 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
[31] VMNet 100% 74.6 87.0 83.8 85.8 72.9 85.0 50.1 87.4 58.7 65.8 95.6 56.4 29.9 76.5 90.2 71.6 81.2 63.1 93.9 85.8 70.9
[55] OccuSeg 100% 76.4 75.8 79.6 83.9 74.6 90.7 56.2 85.0 68.0 67.2 97.8 61.0 33.5 77.7 81.9 84.7 83.0 69.1 97.2 88.5 72.7
[56] Mix3D 100% 78.1 96.4 85.5 84.3 78.1 85.8 57.5 83.1 68.5 71.4 97.9 59.4 31.0 80.1 89.2 84.1 81.9 72.3 94.0 88.7 72.5

[2] SQN 0.1% 51.6 44.2 68.3 58.7 47.2 75.5 30.7 47.9 48.9 33.3 93.0 29.6 32.7 27.0 42.3 38.7 68.3 54.0 76.2 71.1 44.7
[2] SQN 0.01% 35.9 35.5 59.0 53.6 21.4 62.8 25.8 40.4 34.0 19.9 91.8 24.2 14.5 01.5 16.6 09.4 53.4 36.7 33.3 58.1 25.8

PointMatch 0.1% 68.8 87.0 78.7 71.8 67.2 83.8 40.8 78.2 60.7 60.2 94.2 50.3 23.8 69.2 77.9 66.1 73.4 58.3 90.8 83.1 81.0
PointMatch 0.01% 57.1 81.5 77.8 60.1 51.7 78.6 28.4 60.3 52.9 48.6 91.4 39.5 08.3 49.2 50.3 37.1 68.4 46.5 74.5 79.9 57.8
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0.95, 0.95, 0.5, 1.0, and 1.0, respectively. The network is trained
for 512 epochs using Adam optimizer [58] with a learning rate
of 0.01 and a mini-batch size of 8 on the ScanNet-v2 dataset and
4 for the S3DIS dataset. Considering the total number of training
epochs, we replace the epoch number k in Eq. (8) with ⌊k/64⌋
n the ‘‘1thing1click’’ setting and ⌊k/32⌋ on others, which is the
ound-off of k divided by 32 or 64, in order to slow the decay rate.
or the super-point generation, we follow [4] to use the mesh
egment results [1] on the ScanNet-v2 dataset and the super-
oint graph partition manner proposed by [52] on the S3DIS
ataset. Note that the super-points are used in training, and the
nference stage does not rely on super-points. In terms of training
trategy, a 0.01 learning rate is used with a step-decay at the
poch 384 to 0.001. All experiments are conducted on an Intel
eon Gold 6226R CPU and an NVIDIA RTX3090 GPU with 24 GB
emory.

seudo-code. To increase the reproducibility, we provide a pseudo
ode of the core part of our PointMatch in Alg. 1. The complete
ersion will be released upon acceptance.

.2. Experiment results

valuation on ScanNet-v2. On the ScanNet-v2 [1] dataset, the
valuation of PointMatch is conducted on four weakly-supervised
ettings, i.e, 0.01% of points annotated in each scene [2], 0.1%
f points annotated in each scene [2], 20 points annotated per
cene [3] (20 points), and 1 point annotated for each instance in
he scene [4] (1thing1click). The annotated points in the first two
ettings (0.01% and 0.1%) are randomly chosen following [2]. The
‘20 points’’ setting is implemented following the official ScanNet-
2 ‘‘3D Semantic label with Limited Annotations’’ benchmark [3].
nnotated points in the ‘‘1thing1click’’ setting are randomly cho-
en from each instance following [4]. The average point label
n this setting is around 0.02% [4]. The evaluation results on
he ScanNet-v2 online test set are presented in Table 1. Existing
eakly supervised 3D semantic segmentation methods are also

ncluded for comparison, and some fully supervised methods are
lso listed in the table. As shown in the table, the proposed
ointMatch consistently surpasses all existing methods over all
eakly-supervised settings. It outperforms the state-of-the-art
SOTA) result by 21.2% on the 0.01% setting, by 17.2% on the
.1% setting, and by 3.0% on the ‘‘20 points’’ setting. The per-
ormance on the ‘‘1thing1click’’ setting is further close to the
ully-supervised baseline. Note that the work OTOC [4] takes 5
urns of iterative training to reach the above results, which is
round 1536 epochs (3 times of ours). In addition, we also provide
he performance of PointMatch on the ScanNet-v2 validation set
n Table 2, on four weakly-supervised settings mentioned above,
hich also proves the superiority of PointMatch. Detailed results
ver 20 categories on the 0.1% and 0.01% settings are shown in

able 3.
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valuation on s3DIS. We also evaluate the proposed method on
he S3DIS [16] dataset to further validate the effectiveness of the
roposed method. Three weakly-supervised settings are included
or evaluation, i.e, 0.01%, 0.1%, and ‘‘1thing1click’’ (no official ‘‘20
oints’’ setting provided for S3DIS). Note that the point cloud in
he S3DIS dataset usually contains much more points than in the
canNet-v2 dataset. By estimate, around 0.0036% of points are
nnotated in the ‘‘1thing1click’’ setting. The results on these three
ettings are listed in Table 5. The SOTA methods on both the
ully-supervised and weakly-supervised settings are presented
n the table for comparison. It is observed that the proposed
ointMatch achieves the best performance over all three settings.
t surpasses the SOTA result on the 0.01% setting by a large margin
f 14.6%, by 5.2% on the ‘‘1thing1click’’ setting, and by 2.0% on
he 0.1% setting. Impressively, our result on the 0.1% setting is
ery close to the fully-supervised baseline (63.4% v.s. 63.7%). The
bove results strongly prove the effectiveness and superiority of
ointMatch, especially in the scenario of very sparse annotations
0.01%). Detailed results on all 13 categories on the 0.1% and 0.01%
ettings are listed in Table 4.

ualitative results. Except for the quantitative results, we also
xhibit some qualitative segmentation results of PointMatch. As
hown in Fig. 3, we visualize each sample in two rows and six
olumns, namely the input point cloud (upper) and its super-
oint grouping (lower) in column (a), its globally-augmented
upper) and locally-augmented (lower) views in column (b), its
oint-wise (upper) and super-point-wise (lower) pseudo-label
t the early and late stage of training in column (c) and (d),
espectively, the prediction of PointMatch under the weak (up-
er) and full (lower) supervision in column (e), and the corre-
ponding weak label (upper) and ground truth (lower) in column
f). Note that all results we visualize are generated under the
‘1thing1click’’ weak supervision. It is observed that the predic-
ions of PointMatch under weak supervision are close to the
round truths and the fully-supervised predictions. More impres-
ively, the super-point-wise pseudo-labels are superior to the
oint-wise ones at the early stage, while get inferior at the late
tage of training (see red boxes in Fig. 3), which confirms our
laim.

.3. Ablation study

The proposed PointMatch mainly includes two components,
he consistency training paradigm and the adaptive pseudo-
abeling mechanism. Corresponding ablative experiments are con-
ucted for the analysis of them.
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Table 4
IoU(%) on the S3DIS dataset Area-5 over 13 categories. ‘‘Super.’’ means the supervision type.
Method Super. MIoU ceil. floor wall beam col. win. door. table chair sofa book. board. clutter

[18] PointNet++ 100% 52.4 88.8 90.9 75.8 00.2 10.5 43.6 13.9 71.9 82.8 35.7 67.3 51.6 47.8
[19] PointCNN 100% 57.3 92.3 98.2 79.4 00.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
[52] SPGraph 100% 58.0 89.4 96.9 78.1 00.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 02.1 52.2
[23] FPConv 100% 62.8 94.6 98.5 80.9 00.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9
[22] KPConv 100% 67.1 92.8 97.3 82.4 00.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
[32] PointTransformer 100% 70.4 94.0 98.5 86.3 00.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3

[59] Π Model 10% 46.3 91.8 97.1 73.8 00.0 5.1 42.0 19.6 67.2 66.7 47.9 19.1 30.6 41.3
[60] MT 10% 47.9 92.2 96.8 74.1 00.0 10.4 46.2 17.7 70.7 67.0 50.2 24.4 30.7 42.2
[8] DGCNN+CRF 10% 48.0 90.9 97.3 74.8 00.0 08.4 49.3 27.3 71.7 69.0 53.2 16.5 23.3 42.8
[59] Π Model 0.2% 44.3 89.1 97.0 71.5 00.0 03.6 43.2 27.4 63.1 62.1 43.7 14.7 24.0 36.7
[60] MT 0.2% 44.4 88.9 96.8 70.1 00.1 03.0 44.3 28.8 63.7 63.6 43.7 15.5 23.0 35.8
[8] DGCNN+CRF 0.2% 44.5 90.1 97.1 71.9 00.0 01.9 47.2 29.3 64.0 62.9 42.2 15.9 18.9 37.5

[2] SQN 0.1% 61.4 91.7 95.6 78.7 00.0 24.2 55.9 63.1 70.5 83.1 60.7 67.8 56.1 50.6
[2] SQN 0.01% 45.3 89.2 93.5 71.3 00.0 04.1 34.7 41.0 54.9 66.9 25.7 55.4 12.8 39.6

PointMatch 0.1% 63.4 92.8 97.4 81.7 00.0 29.3 46.9 73.8 76.7 87.2 70.7 50.8 63.0 53.7
PointMatch 0.01% 59.9 90.7 97.1 80.4 00.0 15.2 51.2 62.1 72.7 83.7 68.1 43.9 67.1 46.7
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Table 5
MIoU (%) on the S3DIS dataset (Area-5 for validation). * means
the performance of our fully-supervised baseline. The underline
indicates the previous SOTA performance on each setting.
Method Supervision MIoU

[17] PointNet 100% 41.1
[61] SegCloud 100% 48.9
[54] TangentConv 100% 52.8
[19] PointCNN 100% 57.3
[52] SPGraph 100% 58.0
[25] MinkowskiNet 100% 65.4
[22] KPConv 100% 67.1
[32] PointTransformer 100% 70.4

[24] SparseConv 100% 63.7*

[59] Π Model 0.2% 44.3
[60] MT 0.2% 44.4
[8] DGCNN+CRF 0.2% 44.5
[59] Π Model 10% 46.3
[60] MT 10% 47.9
[8] DGCNN+CRF 10% 48.0
[4] OTOC 1thing1click 50.1
[2] SQN 0.01% 45.3
[2] SQN 0.1% 61.4

PointMatch 1thing1click 55.3
PointMatch 0.01% 59.9
PointMatch 0.1% 63.4

Table 6
Ablative results of consistency training in PointMatch. MIoU (%) on
the ScanNet-v2 dataset validation set.
Method Supervision MIoU

Fully-Sup. Version 100% 72.2

PointMatch 0.01% 58.7
w/o Consist. Training 0.01% 51.3

PointMatch 0.1% 69.3
w/o Consist. Training 0.1% 67.3

PointMatch 20 points 64.8
w/o Consist. Training 20 points 55.0

PointMatch 1thing1click 70.7
w/o Consist. Training 1thing1click 62.2

Consistency training. To validate the effectiveness of the consis-
ency training, we remove one branch in our framework as well
s the pseudo-labeling mechanism, so the resultant version is a
parseConv simply trained on the weak supervision (extended by
uper-point information as the original) with a cross-entropy loss.
e implement ablative experiments on four weakly-supervised

ettings on the ScanNet-v2 validation set. As shown in Table 6,
 s
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Table 7
Ablative results of adaptive pseudo-labeling in PointMatch. MIoU
(%) on the S3DIS dataset Area-5.
Method Supervision MIoU

Fully-Sup. Version 100% 63.7

PointMatch 0.01% 59.9
w = 0 0.01% 58.4
w = 1 0.01% 56.1
w = 0.5 0.01% 54.6
k← ⌊k/16⌋ 0.01% 58.7

PointMatch 1thing1click 55.3
w = 0 1thing1click 52.6
w = 1 1thing1click 50.2
w = 0.5 1thing1click 48.4
k← ⌊k/32⌋ 1thing1click 53.3

removing the consistency training results in noticeable perfor-
mance drops consistently over all weakly-supervised settings, es-
pecially on the schemes with extremely little supervision, which
strongly proves its great effectiveness.

Adaptive pseudo-labeling. The adaptive pseudo-labeling mecha-
nism plays the role of pseudo-label correction at the early stage of
training, and it is implemented with an inverse decay. To confirm
the effectiveness of our design, we implement four versions on
two weakly-supervised settings (‘‘1thing1click’’ and ‘‘0.01%’’) for
comparison: (i) using point-wise pseudo-label only (w = 0);
(ii) using super-point-wise pseudo-label only (w = 1); (iii) using
both two pseudo-labels but in a constant manner, by setting w to
.5 (w = 0.5); (iv) using the adaptive mechanism with a larger
ecay ratio, by using ⌊k/32⌋ (‘‘1thing1click’’ settings) and ⌊k/32⌋
0.01% settings) in Eq. (8) (k← ⌊k/16(32)⌋). Results are listed in
able 7. Using either type of pseudo-label only is inferior to the
daptive combination, because both point-wise and super-point-
ise pseudo-label have their own strengths. Using a constant
eight also leads to a performance drop, which proves that giving
emporally different reliance on the two pseudo-labels can better
xploit their advantages. Besides, a faster decay of the weight w
lso results in a slightly worse result, which is usually close to the
esults of using point-wise pseudo labels only (w = 0). One rea-
on is that the network is unable to learn adequate information
rom super-points when w drops too fast.

. Conclusion and discussion

We propose a novel approach, PointMatch, which introduces a
onsistency training framework into weakly supervised semantic
egmentation of point clouds. It works by enforcing the predictive
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Fig. 3. Visualization of the qualitative results. We sample three scenes from the training set and their related results include, (a) upper: input point clouds, lower:
the super-point grouping, in which colors do not indicate category information; (b): two views of the input point cloud; (c) upper: the point-wise pseudo-label at
the early stage, lower: the super-point-level pseudo-label at the early stage; (d) upper: the point-wise pseudo-label at the late stage, lower: the super-point-level
pseudo-label at the late stage; (e) upper: the weakly-supervised prediction, lower: the fully-supervised prediction; (f) upper: the weak supervision, lower: the full
supervision (ground truth).
t
l
s

consistency between two views of a point cloud via pseudo-
labeling, and enables the network to perform robust represen-
tation learning from weak label and data itself. The pseudo-label
quality is further promoted by integrating super-point informa-
tion in an adaptive manner. We use super-point clustering to
extend the initial sparse supervision for the early stage of train-
ing, while in the later stage, we encourage more belief on the
point-wise prediction by the model itself to introduce more pre-
cise pseudo supervision. Impressively, PointMatch achieves SOTA
performance over various weakly-supervised semantic segmenta-
tion settings on both ScanNet-v2 and S3DIS datasets, and shows
strong robustness given even extremely few labels, e.g 20 points
per scene and 0.01% of points annotated.
 o
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As for the limitation of this approach, it relies on a consid-
erably good super-point division to guarantee the label quality
in the initial learning stage, so the performance may be greatly
influenced in extremely noisy cases.
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